5 research outputs found

    Parallel Smoothers for Matrix-based Multigrid Methods on Unstructured Meshes Using Multicore CPUs and GPUs

    Get PDF
    Multigrid methods are efficient and fast solvers for problems typically modeled by partial differential equations of elliptic type. For problems with complex geometries and local singularities stencil-type discrete operators on equidistant Cartesian grids need to be replaced by more flexible concepts for unstructured meshes in order to properly resolve all problem-inherent specifics and for maintaining a moderate number of unknowns. However, flexibility in the meshes goes along with severe drawbacks with respect to parallel execution – especially with respect to the definition of adequate smoothers. This point becomes in particular pronounced in the framework of fine-grained parallelism on GPUs with hundreds of execution units. We use the approach of matrixbased multigrid that has high flexibility and adapts well to the exigences of modern computing platforms. In this work we investigate multi-colored Gauß-Seidel type smoothers, the power(q)-pattern enhanced multi-colored ILU(p) smoothers with fillins

    Physical environmental factors related to walking and cycling in older adults: the Belgian aging studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Socio-ecological models emphasize the relationship between the physical environment and physical activity (PA). However, knowledge about this relationship in older adults is limited. Therefore, the present study aims to investigate the relationship between area of residence (urban, semi-urban or rural) and older adults' walking and cycling for transportation and recreation. Additionally, relationships between several physical environmental factors and walking and cycling and possible moderating effects of area of residence, age and gender were studied.</p> <p>Methods</p> <p>Data from 48,879 Flemish older adults collected in 2004-2010 through peer research were analyzed. Walking, cycling and environmental perceptions were assessed using self-administered questionnaires. The Study Service of the Flemish Government provided objective data on municipal characteristics. Multilevel logistic regression analyses were applied.</p> <p>Results</p> <p>Urban participants were more likely to walk daily for transportation compared to rural (OR = 1.43; 95% CI = 1.22, 1.67) and semi-urban participants (OR = 1.32; 95% CI = 1.13, 1.54). Urban participants were less likely to cycle daily for transportation compared to semi-urban participants (OR = 0.72; 95% CI = 0.56, 0.92). Area of residence was unrelated to weekly recreational walking/cycling. Perceived short distances to services (ORs ranging from 1.04 to 1.19) and satisfaction with public transport (ORs ranging from 1.07 to 1.13) were significantly positively related to all walking/cycling behaviors. Feelings of unsafety was negatively related to walking for transportation (OR = 0.93, 95% CI = 0.91, 0.95) and recreational walking/cycling (OR = 0.95, 95% CI = 0.92, 0.97). In females, it was also negatively related to cycling for transportation (OR = 0.94, 95% CI = 0.90, 0.98).</p> <p>Conclusions</p> <p>Urban residents were more likely to walk for transportation daily compared to semi-urban and rural residents. Daily cycling for transportation was less prevalent among urban compared to semi-urban residents. Access to destinations appeared to be important for promoting both walking and cycling for transportation and recreation across all demographic subgroups. Additionaly, feelings of unsafety were associated with lower rates of walking for transportation and walking/cycling for recreation in all subgroups and cycling for transportation in females. No clear patterns emerged for other environmental factors.</p

    Parallelization of TWOPORFLOW, a Cartesian Grid based Two-phase Porous Media Code for Transient Thermo-hydraulic Simulations

    No full text
    TWOPORFLOW is a thermo-hydraulic code based on a porous media approach to simulate single- and two-phase flow including boiling. It is under development at the Institute for Neutron Physics and Reactor Technology (INR) at KIT. The code features a 3D transient solution of the mass, momentum and energy conservation equations for two inter-penetrating fluids with a semi-implicit continuous Eulerian type solver. The application domain of TWOPORFLOW includes the flow in standard porous media and in structured porous media such as micro-channels and cores of nuclear power plants. In the latter case, the fluid domain is coupled to a fuel rod model, describing the heat flow inside the solid structure. In this work, detailed profiling tools have been utilized to determine the optimization potential of TWOPORFLOW. As a result, bottle-necks were identified and reduced in the most feasible way, leading for instance to an optimization of the water-steam property computation. Furthermore, an OpenMP implementation addressing the routines in charge of inter-phase momentum-, energy- and mass-coupling delivered good performance together with a high scalability on shared memory architectures. In contrast to that, the approach for distributed memory systems was to solve sub-problems resulting by the decomposition of the initial Cartesian geometry. Thread communication for the sub-problem boundary updates was accomplished by the Message Passing Interface (MPI) standard
    corecore